La anomalía de L’Atalante

Los metazoos de L’Atalante, en el Mediterráneo oriental, desafían una vez más los límites de la vida.

Tardigrado u osito de agua, un poliextremófilo extremadamente resistente, incluso al espacio exterior.

El tardígrado u osito de agua, un invitado habitual en este blog. Pese a ser un animal como nosotros, se trata de un poliextremófilo radical capaz de sobrevivir a 6.000 atmósferas de presión, a más de 5.000 grays de radiación (10 grays bastan para aniquilar a los humanos) y hasta en el espacio exterior: en septiembre de 2007, la cápsula rusa Foton-M3 se llevó a unos cuantos de paseo por la órbita terrestre durante 12 días, expuestos al vacío cósmico y la radiación ultravioleta solar. Tras ser rehidratados a su regreso, el 68% revivieron (aunque la mortalidad posterior fue elevada.) Los huevos que llevaban con ellos resultaron esterilizados, pero los que pusieron después eclosionaron con normalidad. Fuente: Jönsson et al, «Tardigrades survive exposure to space in low Earth orbit», Current Biology Magazine vol. 18, nº 17, R729-731.

Me fascinan los extremófilos, esos seres disidentes que por el mero hecho de existir ponen en tela de juicio todas las convenciones sobre lo que es posible en el mundo de los vivos. Desde hace algún tiempo, ya sabemos que existen seres capaces de medrar y tomarse unas cañitas tranquilamente en entornos antiguamente considerados imposibles para la vida. Arqueas que siguen reproduciéndose a 122ºC o sumergidas en ácido sulfúrico, bacterias capaces de sobrevivir a presiones suficientes como para producir diamante artificial (16.000 atmósferas) o a 30.000 grays de radiación gamma (similar a la radiación directa a 590 metros de un arma termonuclear de un megatón), líquenes que mantienen su actividad fotosintética a 20ºC bajo cero, indicios de actividad enzimática en mezclas acuosas a 100ºC bajo cero, y hasta organismos pluricelulares complejos con la habilidad de soportar buena parte de todo esto mientras viajan expuestos al espacio exterior, como nuestro querido osito de agua

Incluso sin salir de aquí, incluso sin abandonar el planeta Tierra, donde la vida ha surgido sometida a unos determinantes físico-químicos muy específicos, estamos rodeados por vivientes que podrían sobrevivir, reproducirse y evolucionar en condiciones alienígenas. De hecho, es incluso posible que la primera vida sobre la faz de la Tierra estuviera constituida por algunos de estos seres extremos, al calor de las fumarolas submarinas. Así pues, con tantas pruebas de que es posible la vida e incluso la vida compleja donde se creía imposible, surge inmediatamente la pregunta de si es posible la vida e incluso la vida compleja como se creía imposible. Por ejemplo, en ausencia de alguno de sus constituyentes fundamentales: carbono, nitrógeno, hidrógeno, oxígeno, lo que viene a llamarse por el acrónimo CHON.

Bioelementos.

Composición química del ser humano, por masa

Composición elemental del ser humano, por masa. (Clic para ampliar)

En el planeta Tierra, los elementos fundamentales para la vida son el carbono, el nitrógeno, el hidrógeno y el oxígeno. Entre los cuatro, suman entre el 97,9 y el 99,7% de lo que somos. No tiene nada de raro: todos ellos se cuentan entre los elementos más comunes de nuestra galaxia y de la corteza y atmósfera terrestres que nos vieron nacer. También se consideran esenciales el fósforo y el azufre, dando lugar al acrónimo CHONPS. Y resulta difícil imaginar vivientes como los de aquí sin sodio, calcio, potasio, magnesio, cloro, hierro y yodo. Los demás elementos que intervienen en la vida terrestre, hasta unos setenta aproximadamente, aparecen en unos seres vivos y en otros no. (+info: Esta es tu naturaleza)

De todos ellos, la clave de la vida terrestre es el carbono pero su principal componente es el oxígeno: por ejemplo, en un cuerpo humano, asciende al 62,8% de la masa que nos constituye. En las bacterias esta cifra aumenta al 73,7% y en algunas plantas, como la alfalfa, llega al 77,9%. ¿Y dónde está este oxígeno? Bueno, pues mayormente fijado en el agua; entre la mitad y las tres cuartas partes de lo que somos es agua. Pero también en un montón de las demás moléculas que nos dan forma. De hecho, es difícil concebir biomoléculas que no contengan oxígeno. Desde los lípidos más básicos que componen las membranas celulares hasta monstruos como el ADN y el ARN, todos necesitan el oxígeno para existir.

Hasta hace poco se pensaba que todos los seres multicelulares complejos necesitamos de la presencia del oxígeno libre (O2) en nuestro entorno para sobrevivir y reproducirnos. Es decir, que somos aerobios obligatorios. Sin oxígeno libre en el aire o en el agua que nos rodea, según tengamos pulmones o agallas o lo que sea, nos asfixiamos y morimos rápidamente. Eso de vivir en ausencia de oxígeno era cosa de seres unicelulares como las bacterias o las arqueas, que usan mecanismos como la fermentación o la respiración anaeróbica para conseguir lo suyo. Pero nada más complejo que un protozoo podía existir sin tirar mano del oxígeno a su alrededor; y aún estos, con dificultades. Eso creíamos.

Buque oceanográfico L'Atalante

Buque oceanográfico L’Atalante, del Instituto Francés de Investigaciones para la Explotación del Mar (IFREMER). Foto: © IFREMER

Los extraños habitantes de L’Atalante.

Cuenca de L'Atalante - Ubicación

Ubicación de la Cuenca de L’Atalante, Mediterráneo Oriental. Mapa base: © Google Maps (clic para ampliar)

Así fue hasta el año 2010, cuando empezaron a llegar noticias sobre unos bichejos francamente extraños que medran a su gusto en la Cuenca de L’Atalante, a su vez un sitio bastante peculiar. La Cuenca de L’Atalante es un lago submarino de salmuera situado en el Mediterráneo Oriental, 192 km al Oeste de Creta, a unos 3.500 metros de profundidad. No es el único; hay bastantes más. En realidad, es el más pequeño de los tres que se encuentran por la zona. Este en particular recibe su nombre por el buque francés de investigación oceanográfica que lo descubrió en 1993.

Este lago de salmuera y sus dos vecinos, Urania y Discovery, se formaron hace no más de 35.000 años, conforme los depósitos de evaporita surgidos durante la Crisis salina del Messiniense (hace algo más de cinco millones de años) fueron disolviéndose y reconcentrándose en las profundidades del Mediterráneo. Así, su salinidad se disparó. Hoy en día es ocho veces superior a la del agua marina corriente, cerca del punto de saturación. Se trata básicamente de un lago hipersalino, pero a gran profundidad.

Estos lagos submarinos de salmuera tienen varias peculiaridades. Una de ellas es que sus aguas se mezclan muy poco con las del resto del mar. Es decir, con las que tienen oxígeno libre disuelto, lo que permite respirar a los peces y demás. Eso significa que éste no puede pasar y, como resultado, son fuertemente anóxicos. Vamos, que prácticamente no hay oxígeno libre en ellos.

Así que durante los siguientes diecisiete años se supuso que en L’Atalante sólo residían los vecinos de turno en semejantes sitios: bacterias y arqueas quimioautótrofas, como las euriarqueotas aficionadas a las fuentes hidrotermales y demás extremófilos a los que sólo les molan los sitios que nos matarían rápidamente a todos los demás. Especialmente, a los metazoos. O sea, a nosotros, los animales.

Spinoloricus nov. sp.

La loricífera Spinoloricus nov. sp. de la Cuenca de L’Atalante, el primer animal encontrado que puede vivir en condiciones totalmente anóxicas. Teñida con Rosa de Bengala. Imagen: Danovaro et al. BMC Biology 2010, 8:30

Hasta que, en 2010, apareció la anomalía. Lo hizo en un paper encabezado por el profesor italiano de biología marina Roberto Danovaro, que lleva por título «Los primeros metazoos viviendo en condiciones anóxicas permanentes.« Es decir, animales viviendo sin presencia de oxígeno libre. Hasta el día anterior tal cosa se consideraba, esencialmente, imposible.

Y sin embargo ahí están, bien sanos y lustrosos. En las fosas hipersalinas del Mediterráneo se han pillado el apartamento al menos tres especies de Loricifera que no necesitan respirar oxígeno libre como todo hijo de madre pluricelular. Los Loricifera son unos bichitos microscópicos o casi, residentes habituales en los sedimentos del fondo marino y evolutivamente próximos a los gusanos gordianos y los gusanos-pene (sí, ese pene en el que estás pensando). Estas tres especies se llaman Spinoloricus nov. sp. (o Spinoloricus Cinzia), Rugiloricus nov. sp. y Pliciloricus nov. sp.

¿Pero cómo son capaces? Bien, según los estudios realizados hasta el momento, resulta que estos tres animalitos carecen de mitocondrias, con lo que no tienen las mismas exigencias de respiración celular que el resto de nosotros. En su lugar parecen poseer hidrogenosomas, algo más propio de ciertos hongos, protistasprotozoos ciliados. El intrincado proceso evolutivo mediante el que tales hidrogenosomas pudieron acabar en un animal pluricelular como tú y como yo es todavía desconocido. Algunos sugieren que podría tratarse de simbiontes, pero esto presenta sus propios problemas.

A decir verdad, todavía no se sabe gran cosa de ellos. Están en ello. Pero se reproducen por huevos (que nooo, que quiero decir que son ovíparos). Aunque el equipo del Dr. Danovaro no logró llevar a ninguno de estos animales hasta la superficie sin que murieran por el camino, dos de los que obtuvieron contenían huevos. Se los extrajeron y los incubaron en condiciones totalmente anóxicas a bordo del buque, con éxito. Los huevos terminaron abriéndose y dieron lugar a animalitos vivos.

Cada vez más vida, en lugares cada vez más imposibles.

Naturalmente, Spinoloricus nov. sp., Rugiloricus nov. sp. y Pliciloricus nov. sp. incorporan tanto oxígeno en sus moléculas como el resto de los terrestres y lo necesitan para sobrevivir, por mucho que lo obtengan de manera distinta. Toda la vida que conocemos en este planeta procede de un antepasado común; estos Loricifera no son una excepción. Están sujetos a las mismas reglas que todos los demás, y eso incluye ser CHONis –ya sabes, carbono, hidrógeno, oxígeno, nitrógeno ;-) –. No son animales libres de oxígeno, como se ha dicho por ahí. Simplemente gestionan su oxígeno de una manera distinta, bastante extraordinaria.

Pero también es cierto que la vida no deja de darnos sorpresas. Cada vez que alguien establece un límite sobre los lugares donde es posible la vida, al menos en un entorno planetario como la Tierra, termina apareciendo algún bicho que se lo come. Y algunos, claro, nos preguntamos dónde está el límite. Los más astrobiotrastornados, nos preguntamos lo que podría ser posible con otras biologías, bajo la luz de otros soles.

En este sentido, una de mis rayadas favoritas me la enseñó el astrofísico del pueblo Carl Sagan, y no soy el único que la sufre. Es, por supuesto, lo que llamamos el chauvinismo del agua. En las propias palabras de Carl:

Hay chauvinismo del carbono, chauvinismo del agua… ya sabes, gente que dice que la vida, en todas partes, sólo puede basarse en las mismas bases químicas en que nos sustentamos nosotros. Bien, a lo mejor tienen razón. Pero dado que los mismos tipos que hacen esa afirmación están basados en el carbono y en el agua, a mí me hace sospechar. Si estuvieran basados en alguna otra cosa, me merecerían más credibilidad.

Debo confesar que soy un chauvinista del carbono. Habiendo estudiado las alternativas, me parece que el carbono es mucho más adecuado para crear moléculas complejas, y mucho más abundante que cualquier otra cosa en que podamos pensar. (…) Sin embargo, no soy tan chauvinista del agua. Me puedo imaginar al amoníaco, o combinaciones de hidrocarburos que no son nada raras en el universo, desempeñando el papel del agua.

Luego tenemos a los chauvinistas del tipo espectral G, que dicen que sólo puede haber vida en torno a estrellas como la nuestra. Los chauvinistas planetarios dicen que la vida sólo puede ocurrir en planetas y no, por ejemplo, en estrellas o en el medio interestelar. Soy un chauvinista planetario: parece haber buenas razones para que la vida sólo pueda aparecer en planetas [o lunas].

El chauvinista extremo dice: «si mi abuela estaría incómoda en ese ambiente, entonces la vida es imposible ahí.» Uno se encuentra con eso a menudo. La conocida expresión «la vida tal y como la conocemos» se basa exactamente en esa idea. Pero hay muchos microorganismos exóticos en la Tierra a los que les va bien en soluciones calientes de ácido sulfúrico concentrado y otras muchas cosas. Si no has oído hablar de ellos, te crees que nadie podría vivir en semejante entorno. Pero hay bichos que lo adoran.

Creo que una de las grandes delicias de la exobiología es que nos obliga a enfrentarnos al provincialismo en nuestras suposiciones biológicas. Toda la vida en la Tierra es esencialmente la misma; químicamente, somos idénticos a las bacterias o las begonias. (…) Creo que es ahí donde estará la realidad en la búsqueda de inteligencias extraterrestres. No se va a ajustar a nuestras fantasías, y no se va a ajustar a nuestro chauvinismo.

–Timothy Ferris [1973], entrevista a Carl Sagan en la revista Rolling Stone.

(Recogida por Tom Head [2006], Conversaciones con Carl Sagan, pp. 10-12)

No, por el momento seguimos sin tener el más mínimo indicio de vida extraterrestre, pese a todos los creyentes en los OVNIs y contactados que en el mundo son. Hoy por hoy, la paradoja de Fermi (más o menos: «si la vida es común en el universo, ¿dónde está todo el mundo?») sigue tan en vigor como cuando se formuló.

Fotografía del exoplaneta Beta Pictoris b

La primera fotografía directa de un exoplaneta: Beta Pictoris b, a 63 años-luz de aquí, Obtenida por el Very Large Telescope (VLT) del European Southern Observatory en Chile. (Clic para ampliar)

Sin embargo, la hipótesis de la Tierra especial, de que la Tierra es un caso excepcional en el universo con una rarísima capacidad para albergar vida, se sostiene cada vez menos. Para empezar, estamos detectando exoplanetas sin parar. En estos momentos, se han confirmado 1.074 en 812 sistemas solares, de los cuales al menos 178 son sistemas múltiples como el nuestro, y hay varios miles de candidatos más. Incluso con nuestras precarias capacidades de detección actuales –los planetas y lunas no emiten luz propia, con lo que requieren instrumentos extremadamente sensibles para captarlos–, vamos estando en condiciones de extrapolar que hay al menos cien mil millones de planetas sólo en nuestra galaxia, un promedio de uno por cada estrella como mínimo. Es de suponer que muchos de estos planetas tendrán lunas, demasiado pequeñas para distinguirlas con nuestra tecnología actual. A poco que los sistemas solares se generen de manera parecida en el universo observable, y no tenemos ningún motivo para sospechar lo contrario, puedes ir multiplicando eso por los al menos cien mil millones de galaxias que hay (probablemente bastantes más.) Eso es un uno seguido de veintidós ceros, sólo para empezar.

Los sistemas solares no son raros en absoluto. Suponiendo que sólo las estrellas de tipo G (como el Sol) y unas pocas de las más parecidas entre las F y las K pudieran albergar vida (el chauvinismo del tipo espectral G que mencionaba Sagan), representarían al menos un 10% de todas ellas. Continuamos teniendo un uno seguido de veintiún ceros. Vamos a descontar también las que pudieran estar fuera de las zonas de habitabilidad galáctica, un concepto en parte controvertido que algunos nos tomamos con un grano de anís. Pero lo daremos por bueno, y además en una de sus variantes más severas: metámosle a la cifra un hachazo de otro 90% (en vez del 60% habitual o el 40% optimista) y seguimos teniendo un uno seguido de veinte ceros de estrellas como la nuestra instaladas en las zonas más habitables de sus respectivas galaxias. Y a cada una de ellas le corresponde un sistema solar como el nuestro, compuesto por planetas y lunas como las nuestras. Si esto de incluir a todas las galaxias te parece demasiado atrevido y sólo quieres contar la nuestra, mil millones.

Y si sólo uno de cada mil planetas son de tipo terrestre y se hallan en las zonas de habitabilidad estelar de sus respectivos soles (una estimación considerablemente estirada a la baja), nos siguen quedando un millón en esta galaxia y cien billones en el universo observable presente. Y aún no hemos empezado a contar satélites, que no se pueden descartar en absoluto, porque algunos de ellos pueden ser de notable tamaño, con atmósfera propia, aunque orbiten en torno a planetas de tipo no-terrestre. Como, por ejemplo, Titán de Saturno, que presenta una densa atmósfera de nitrógeno, agua en forma de hielo e hidrocarburos líquidos superficiales. Sólo en nuestro sistema solar, hay 19 lunas que han alcanzado el equilibrio hidrostático y por tanto se podrían considerar planetas o planetoides si orbitaran directamente alrededor del Sol. Muchos de estos exosistemas solares presentan también grandes gigantes gaseosos, que algunos consideran importantes para el surgimiento de la vida.

Gliese 667C c - impresión artística superficial

Impresión artística de una puesta del sol en la súper-Tierra Gliese 667 Cc. Las estrellas son el sistema ternario Gliese 667 A/B/C; el planeta orbita en torno a esta última. Imagen:
European Southern Observatory / L. Calçada (Clic para ampliar)

En estos momentos, los exoplanetas confirmados que creemos más similares a la Tierra son Gliese 667C c, a 12 años-luz de aquí, y Kepler-62e, a 1.200. Ambos se encuentran dentro de esa supuesta zona de habitabilidad galáctica de nuestra Vía Láctea y en la zona de habitabilidad estelar de sus respectivos soles, si bien al lado caliente, lo que podría hacer de ellos planetas «súper-tropicales» (!). Hay otros candidatos pendientes de confirmación muy interesantes. En general, la probabilidad de que haya otros mundos capaces de albergar vida se multiplica con cada una de estas detecciones. Y no paran de producirse, conforme nuestros instrumentos mejoran más y más.

Por el extremo contrario, descubrimientos como el de L’Atalante nos demuestran que la vida, incluso la vida pluricelular compleja, incluso los animales como nosotros, son posibles en condiciones cada vez más extremas sin ni siquiera salirse de la biología terrestre, ni del ADN ni de los eucariontes. Sin salirse de los que son como nosotros. Con otras bioquímicas, surgiendo y evolucionando a partir de condiciones distintas hacia dominios insospechados bajo presiones evolutivas radicalmente diferentes, las posibilidades son inmensas y están más allá de lo que puede soñar la más desbocada imaginación.

63 Comentarios Trackbacks / Pingbacks (3)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (62 votos, media: 4,84 de 5)
Cargando...
Be Sociable, Share!

Resultados encuesta: ¿Ha detenido el ser humano su evolución biológica?

Resultados encuesta junio 2011.

Anterior: ¿Conseguirá España algún premio Nobel científico antes de 2050?

Resultados encuesta La Pizarra de Yuri junio 2011: El ser humano, ¿ha detenido su evolución biológica?

Resultados encuesta La Pizarra de Yuri junio 2011: El ser humano, ¿ha detenido su evolución biológica?

Una vez cerrada la décima encuesta, realizada entre el 1 y el 30 de junio de 2011 (inclusives), los 902 votos emitidos han dado lugar a los siguientes resultados en detalle:

El ser humano, ¿ha detenido su evolución biológica?

  1. No; nuestra evolución biológica proseguirá adaptándose a nuestros condicionantes sociales: 358 (39,69%).
  2. En gran medida, sí; en las sociedades modernas, la presión evolutiva ha quedado reducida a un mínimo: 298 (33,04%).
  3. No; no está a nuestro alcance detenerla: 195 (21,62%).
  4. Tengo otra opinión distinta: 51 (5,65%).

Los porcentajes pueden no totalizar el 100% debido a los redondeos decimales.

Esta encuesta no es científica. Sólo refleja la opinión de aquellas personas que eligieron participar.
Los resultados no representan necesariamente la opinión del público, de los usuarios de Internet en general o de los lectores de La Pizarra de Yuri en su totalidad.

Encuesta de julio:

Si tuvieras una máquina del tiempo, ¿a dónde preferirías viajar?

20 Comentarios Trackback / Pingback (1)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (18 votos, media: 4,56 de 5)
Cargando...
Be Sociable, Share!

« Entradas anteriores Página siguiente » Página siguiente »