Archivo de noviembre, 2010

¿…y sólo sobrevivirán las cucarachas y las ratas…?

Los extremófilos no sólo constituyen una asombrosa demostración de la tenacidad de la vida terrestre,
sino que también abren posibilidades extraordinarias en el campo de la vida extraterrestre.

Esta Eosphaera de Gunflint (Minnesota-Ontario, Norteamérica) tiene unos 2.000 millones de años y es el fósil indisputado más antiguo que se conoce.

Esta Eosphaera de Gunflint (Minnesota-Ontario, Norteamérica) tiene unos 2.000 millones de años y es uno de los fósiles indisputados más antiguos que se conocen en la actualidad. Se trataría de un alga primitiva emparentada con las modernas Volvocaceae. Los estromatolitos contienen indicios notables de actividad biológica mucho más antiguos, remontándose al menos a unos 3.000 millones de años y quizás hasta 4.250. (H. Hoffmann, Universidad McGill)

La vida en la Tierra surgió hace unos 3.500 millones de años, ha sobrevivido a cataclismos extraordinarios y no se rendirá con facilidad. Las formas de vida sí desaparecen a menudo, en el proceso que llamamos extinción, pero la vida como tal ha demostrado ser asombrosamente tenaz. Hay una línea continua desde su aparición hasta el presente, sin interrupción alguna, derrotando a todos los algos que intentaron acabar con ella para regresar con más fuerza aún. Tiene cierto mérito eso de haber vencido a todo, medrando y evolucionando para sobrevivir ocupar todos los espacios disponibles a continuación, durante una puñetera cuarta parte de la edad del universo.

Existe incluso una hipótesis, todavía sin demostrar, que dice que la vida es aún más antigua –unos 4.250 millones de años, la tercera parte de la edad del universo– y sobrevivió incluso al último Bombardeo Intenso Tardío en el fondo de los mares y quizás en el mismísimo espacio exterior. Sea cierto esto último o no, no cabe ninguna duda de que la vida es muy antigua y sobre todo muy persistente. Con frecuencia se ha dicho que, si fuéramos tan imbéciles de aniquilarnos a nosotros mismos en una guerra nuclear, sólo sobrevivirían las cucarachas y las ratas. Sin embargo, esto dista mucho de ser una afirmación rigurosa. Las cucarachas y las ratas, aunque más resistentes a la radiación que los humanos, no lo son tanto.

Pero hay seres en nuestro mismo planeta capaces de resistir niveles espectaculares de radiación y otras condiciones extremas. Esto es muy interesante, porque rompe radicalmente algunas imposibilidades relativas al surgimiento y desarrollo de la vida, incluso de la vida basada en el agua y el carbono, tanto terrestre como extraterrestre. Y, por ello, resulta de gran importancia en astrobiología. Veámoslo.

Radiación y vida.

Esto de la radiación es importante, porque junto a la presencia de materia y a la temperatura constituye una de los grandes aguafiestas a la hora de pensar en vida extraterrestre. Una radiación elevada de cualquier clase mata todo lo que pilla, por el sencillo procedimiento de alterar o cargarse los átomos o moléculas necesarios para sustentar cualquier forma sensatamente imaginable de vida (por ejemplo, una radiación excesiva pasa la materia a estado plasmático, en el cual la vida resulta difícilmente posible). De manera muy particular, interfiere en los procesos reproductivos, dislocando los mecanismos biológicos de replicación. Las radiaciones ionizantes (empezando por el alto-ultravioleta y continuando por la radiación gamma y X) se usan habitualmente como una técnica de esterilización contra los microorganismos.

Por otra parte, un nivel demasiado bajo de radiación parece también incompatible con la vida y su evolución. Sin radiación, no hay transferencia significativa de energía a grandes distancias (por ejemplo: la luz y calor de un sol a un planeta) y un nivel saludable de radiaciones ionizantes facilita la mutación, y por tanto la evolución. La pregunta, por tanto, se centra en delimitar los límites de la radiación para que la vida siga siendo razonablemente posible.

Zona de habitabilidad.

La zona habitable de los sistemas solares se define como la región en torno a la estrella donde el agua puede permanecer en estado líquido. (Nueva ventana o pestaña para ampliar)

En general, un nivel de radiación tan bajo que mantenga congelados todos los solventes habituales –como el agua– dificultará enormemente el surgimiento y desarrollo de la vida porque ralentiza y en la práctica impide la interacción a gran escala entre los átomos y moléculas que la constituyen. En condiciones de presión más o menos normales, esto son 0ºC para el agua, 77ºC bajo cero para el amoníaco, 84ºC bajo cero para el fluoruro de hidrógeno y 183ºC bajo cero para el metano. Estos son los solventes más referenciados como posible medio para la vida, y los alternativos no se van mucho tampoco. Un lugar sin suficiente radiación para mantener una temperatura mínima en este rango está, muy probablemente, muerto.

Por el extremo contrario, estos solventes pasan a estado gaseoso y pierden su función biológica en una banda de temperaturas igualmente limitada: 100ºC para el agua, 20ºC para el fluoruro de hidrógeno, el amoníaco se evapora a 33ºC bajo cero y el metano lo hace a 161ºC bajo cero. A niveles mucho mayores, nos vamos al estado plasmático. Esto nos deja un rango francamente estrecho de temperatura operacional para la vida: 104ºC para el fluoruro de hidrógeno, 100 ºC para el agua, 44 ºC para el amoníaco y apenas 22ºC en el caso del metano. Todo nivel de radiación que produzca una temperatura fuera de estos rangos, por exceso o por defecto, tiene muy pocos números para ser compatible con la vida.

La radiación es un fenómeno eminentemente electromagnético (aunque también puede ser corpuscular, como la neutrónica, por ejemplo). Distinguimos entre radiaciones ionizantes y radiaciones no-ionizantes por la manera como interactúan con la materia y específicamente con sus electrones. Como su nombre indica, la radiación ionizante es la que puede ionizar átomos; dicho en plan sencillo, la que lleva energía suficiente para arrancarles los electrones. Esto, lógicamente, provoca una grave alteración del comportamiento químico (y por tanto bioquímico) de la materia. Las radiaciones ionizantes constituyen buena parte de lo que conocemos como radioactividad (junto a algunas no-ionizantes, como las corpusculares).

El centro de la Vía Láctea en el infrarrojo, Telescopio Espacial Spitzer

Los núcleos galácticos son potentes emisores de radiación, lo que puede esterilizar el espacio circundante hasta decenas de miles de años-luz de distancia. En la imagen, el centro de nuestra Vía Láctea en el infrarrojo. (Telescopio Espacial Spitzer, NASA)

La radioactividad se considera peligrosa porque es capaz de alterar significativamente la estructura y comportamiento de las cosas vivas a niveles relativamente bajos de energía total. Provoca con facilidad quemaduras, mutaciones y otros daños que pueden matar con facilidad a un ser vivo. Por ello, un nivel excesivamente elevado de estas radiaciones ionizantes se considera incompatible con la vida, aunque la suma total de irradiación recibida se encuentre en el rango del agua o cualquier otro solvente. Debido a esta razón, las zonas próximas al centro de las galaxias se creen esencialmente muertas (próximas vienen a ser unos 25.000 años-luz en el caso de nuestra Vía Láctea): en los núcleos galácticos se ha detectado una cantidad enorme de radiaciones tanto ionizantes como no-ionizantes.

¿Cuánta radiación ionizante es demasiada radiación? En la vida terrestre, depende de cada organismo en particular. El efecto de la radioactividad sobre los seres humanos está muy estudiado por motivos bien conocidos, con lo que tenemos una idea bastante clara de nuestros límites en este respecto. En general, una dosis inferior a 0,1 millonésimas de gray por hora se considera segura indefinidamente para las radiaciones ionizantes electromagnéticas, y cinco millonésimas por hora durante un año resulta probablemente aceptable. La radiación natural de fondo en España viene a estar entre 0,1 y 0,2 millonésimas de gray por hora (aplicando la conversión 1 sievert = 1 gray utilizada usualmente para la radiación gamma y X; deben aplicarse factores correctores, por ejemplo, en la alfa y de neutrones).

Aunque cifras relativamente bajas pueden ocasionar cáncer y otras enfermedades, los efectos perniciosos de las radiaciones ionizantes en el ser humano comienzan a evidenciarse claramente con exposiciones mucho mayores, aproximadamente a partir de un gray. Hasta el 5% de una población humana expuesta a uno o dos grays morirá durante las siguientes seis u ocho semanas. Una cifra de cinco grays puede matar a la mitad de la población expuesta en un mes más o menos, y diez grays nos aproximan al 100% de mortalidad en dos o cuatro semanas. Hay muy pocas personas que hayan sobrevivido a más de diez grays de radiación ionizante; entre estas, se encuentran algunos liquidadores de Chernóbyl, que en todos los casos resultaron expuestos de manera fraccionaria (en dosis menores separadas en el tiempo). En Hiroshima, algunas personas situadas a 21 kilómetros de la explosión recibieron doce grays; todas murieron. Por ello, consideraremos esta cifra de diez grays en una sola exposición como el límite de resistencia para los seres humanos. Las dosis superiores a treinta grays se consideran totalmente letales en cualquiera de sus formas, con las víctimas pereciendo en menos de dos días.

Rata

Las ratas son mamíferos euarcontoglires como nosotros, los primates, y por tanto acusan la radiación y otras agresiones ambientales de manera muy parecida. Se necesitan 7,5 grays de radiación ionizante para matar a la mitad de una población de ratas, apenas un 50% más de los cinco necesarios para hacer lo mismo con una humana.

Ratas, cucarachas, escarabajos de la harina y ositos de agua.

Las ratas no resisten la radiación ionizante mucho mejor que nosotros. Ambos somos mamíferos euarcontoglires, con un montón de similitudes biológicas. Allá donde la radiación esté matando a la gente como chinches, el resto de mamíferos morirán pronto también, y entre ellos las ratas. Para matar a la mitad de una población de pollos hacen falta seis grays, 7,5 para las ratas, 9 para los ratones y la mitad de una población de peces necesita veinte grays. En general, mamíferos, aves, anfibios y peces estamos mal adaptados a la radioactividad. Los crustáceos, que son artrópodos como los insectos, aguantan mejor: cargarse a la mitad de una población requiere doscientos grays, cuarenta veces más de lo que hace falta para liquidar a la mitad de una población humana.

Las cucarachas son asunto distinto. Pero no por cucarachas, sino por insectos; de hecho, hay insectos muchísimo más resistentes a la radiación ionizante que estas molestas compañeras de la humanidad sedentarizada. Estos bichejos con superávit de patas son tipos realmente duros. Veámoslo.

Diversos estudios habían establecido la resistencia a las radiaciones ionizantes de la cucaracha americana en un máximo de 675 grays; y entre 900 y 1.050 para la «cucaracha rubia» o alemana (sin embargo, sólo hacen falta 64 para matar al 93% de una población inmadura). Estas son, sin duda, cifras impresionantes: hasta ciento cinco veces la radiación máxima que podemos soportar los humanos. Las cucarachas parecen, pues, buenas candidatas para sobrevivir elegantemente a nuestra estupidez: con casi total seguridad, no tenemos armamento capaz de asegurar esos niveles de radiación en todas las tierras emergidas del planeta Tierra donde estos animalitos pueden medrar.

Para su temporada de 2008, la popular serie de televisión estadounidense Cazadores de mitos se propuso comprobar si esto era verdad. Y, ya metidos en materia, comparar a las cucas con otros insectos: la mosca de la fruta y el escarabajo de la harina (de quien ya les habían chivado algo…). Así pues, prepararon una serie de poblaciones de estas tres especies y se dirigieron al Laboratorio Nacional Pacific Northwest para enseñarles una fuente de cobalto-60 capaz de producir 550 grays por hora de radiación beta y gamma; como hemos visto, eso enferma de muerte a un ser humano en diez minutos.

Escarabajo del gusano de la harina (Tenebrio molitor)

El escarabajo del gusano de la harina (Tenebrio molitor) es uno de los insectos más resistentes a la radiación, mucho más que las cucarachas. En la prueba mencionada en el texto, sobrevivieron el doble que ellas a 100 grays y fueron los únicos en resistir 1.000 grays (cien veces más de lo necesario para matar a un ser humano).

Primero les arrearon diez grays, el límite máximo de supervivencia para las personas. Dos días después, habían muerto treinta de cada cien moscas de la fruta, una de cada diez cucarachas (alemanas) y dos de cada cien escarabajos de la harina; en el grupo de control no había perecido ningún individuo de las tres especies. A los quince días habían fallecido todas las moscas de la fruta, tanto en el grupo expuesto como en el de control (las moscas de la fruta sólo viven de dos a tres semanas). Pero de las cucarachas, sólo murieron el 30% (frente al 10% de control) y entre los escarabajos, apenas el 10% (contra el 6% de control). En un mes, la mitad de las cucas estaban difuntas (el 30% en el grupo de control), pero sólo el 26% de los escarabajos (10% en el grupo de control).

Así que decidieron preparar más grupos y meterles más caña: cien grays. Esa fue más o menos la radiación gamma en el aire durante los primeros momentos del ataque contra Hiroshima. En los primeros dos días, habían caído cuatro de cada diez moscas de la fruta, dos de cada diez cucarachas y… seis de cada cien escarabajos. Las mosquitas de la fruta se murieron pronto como es de natural en ellas, pero a los quince días quedaban la mitad de las cucas y el 87% de los escarabajos (90% y 94% de supervivientes, respectivamente, en los grupos de control). Y al mes seguían tan campantes el 30% de las cucas y el 60% de los escarabajitos (70% y 90% en los grupos de control).

Vaya, sí que son duras y duros. En el último intento, les sacudieron con mil grays. No se ha visto muchas veces semejante radiación en nuestro planeta, y todas ellas fue por causa humana. Para hacernos una idea, eso son cuatro veces más que el máximo alcanzado por hora en el entorno del reactor Chernóbyl-4 durante el accidente o en la primera hora después del bombardeo de Nagasaki; y más o menos lo que cabría esperar a unos cien metros de una cabeza termonuclear de un megatón estallando ante nuestros ojos. Ciento nueve minutos enteros de cobalto-60 a saco matraco, oiga.

Con mil grays, todas las cucarachas estaban muertas en dos días. Pero sólo el 60% de las moscas de la fruta. Y apenas el 10% de los escarabajos de la harina. A las dos semanas, no quedaba ninguna cucaracha ni mosca de la fruta (que, recordemos, se mueren de muerte natural en este plazo), pero aún vivían la mitad de los escarabajos (frente al 94% del grupo de control). Y al mes, sobrevivían todavía el 10% (90% en el grupo de control). Dicho de otra manera, uno de cada diez escarabajos de la harina podrían haberse paseado durante cuatro horas en torno al reactor reventado de Chernóbyl y sobrevivir durante al menos un mes. Desafortunadamente, el estudio de Cazadores de mitos no incluye información sobre lo que ocurrió después, ni especifica si fueron capaces de reproducirse y en su caso qué pasó con la descendencia.

Tardigrado u osito de agua, un poliextremófilo extremadamente resistente.

El ¿simpático? osito de agua es un poliextremófilo capaz de sobrevivir a 6.000 atmósferas de presión, en el espacio exterior y a más de 5.000 grays de radiación, quinientas veces más de lo necesario para aniquilar a los humanos. Se trata del animal más resistente conocido.

El escarabajo de la harina es uno de los insectos más resistentes a la radiación, pero tiene competencia. Por ejemplo, de una avispita llamada Habrobracon: necesitas 1.800 grays para asegurarte de que las matas a todas (Wharton y Wharton, 1959). Eso son 180 veces más de lo preciso para matar a todos los humanos de una población expuesta. Existen otros animalitos que no son insectos capaces de sobrevivir a estas dosis monumentales de radiación ionizante. Los Bdelloidea, unos bichitos invertebrados acuáticos de la familia de los rotíferos, pueden resistir 1.120 grays manteniendo una décima parte de su capacidad reproductiva (y produciendo descendencia sana).

Sin embargo, estos no son los animales más resistentes. El animal más resistente a la radiación que se conoce es un pequeño protóstomo, el tardígrado u osito de agua. Este animalín de apenas un milímetro es un durísimo poliextremófilo capaz de sobrevivir a un grado por encima del cero absoluto durante unos minutos, diez días deshidratado por completo, o lo que le de la real gana a seis mil atmósferas de presión (¡seis mil atmósferas de presión, como seis veces en el fondo de la fosa de las Marianas, o sea como en la recámara del cañón de un tanque T-80 durante el disparo!). De hecho, es que puede sobrevivir en el espacio exterior, a presión casi cero y temperaturas bajísimas, expuesto directamente a l0s rayos cósmicos y la radiación solar ultravioleta: después de su viaje de doce días en la nave rusa FOTON-M3, el 12% consiguieron seguir reproduciéndose con normalidad.

Este humilde y probablemente simpático osito de agua se ha encontrado en el Himalaya, a 4.000 metros de profundidad, en el Polo Norte, en el Ecuador… y puede aguantar la friolera de 5.000 grays de radiación gamma y hasta 6.400 de iones pesados, aunque pierde la capacidad de reproducirse. Cuando la mantiene, a veces se reproduce por partenogénesis pero más a menudo por vía sexuada, en ambos casos mediante huevos. De entre los que somos pluricelulares, no se conoce a ningún hijo de madre más duro que él. Pero en materia de supervivencia nadie, nadie puede competir con las bacterias.

Deinococcus radiodurans, thermococcus gammatolerans.

Los hongos y las bacterias son francamente duros de pelar. Muy, muy duros de pelar. Para cargarte a la mitad de una población típica de cualquier bacteria de andar por casa, necesitas esos mismos mil grays que sólo algunos animales logran soportar. La popular Candida, un hongo que se pega mucho si no usas condón, pide 24.000 grays para morirse de una buena vez: 2.400 veces más de lo necesario para aniquilar a la gente humana. Pero los más tenaces de entre todos los vivientes se encuentran en el reino casi infinito de las bacterias y sobre todo de las archaeas.

Deinococcus radiodurans

Deinococcus radiodurans mantiene el 37% de su viabilidad a 15.000 Grays, mil quinientas veces más de lo que mata a un ser humano.

Deinococcus radiodurans, también conocida como Conan the Bacterium, para por ser la más dura entre las duras de todos los vivientes que medramos en esta Tierra vieja; y como tal aparece en el Libro Guiness de los Récords. Pertenece al phylum Deinococcus, no parece ocasionar ninguna enfermedad y suele agruparse de cuatro en cuatro. Es como una esfera rosada de tamaño respetable para una bacteria (1,5 a 3,5 micras) y se cultiva con facilidad. Su presencia produce mal olor, como a repollo podrido. Tiñe en gram-positivo aunque presenta algunas características de las gram-negativas, no forma endosporas y carece de movimiento propio. Es un quimioorganoheterótrofo aeróbico, o sea que necesita oxígeno para producir su energía a partir de compuestos orgánicos presentes en el entorno; en ese sentido, se nos parece mucho. Por ello, se halla en lugares ricos en estos compuestos orgánicos, como la tierra, las heces, la carne o el alcantarillado, aunque también se ha encontrado en el polvo, la comida deshidratada, los instrumentos quirúrgicos y los tejidos. Sería un microorganismo como cualquier otro si no fuese por su resistencia a las agresiones del medio.

Y esa resistencia es extraordinaria: estamos ante un poliextremófilo radical. Pero donde destaca es, sobre todo, en su capacidad para soportar las radiaciones ionizantes. Deinococcus radiotolerans resiste 5.000 grays sin inmutarse, mantiene el 37% de su capacidad de crecer y reproducirse a 15.000 (es decir, 1.500 veces lo necesario para matar a toda una población humana) y algunas logran sobrevivir por encima de 30.000 (fuente 1, fuente 2). Estas son cifras fabulosas de radiación, cien veces superiores a lo que se llega a ver en un gran accidente o explosión nuclear. También resulta muy resistente a las variaciones de temperatura, a la deshidratación y a la presencia de contaminantes químicos tóxicos. Por ello, se están usando –con algunos retoques de ingeniería genética– para procesar los residuos resultantes de la fabricación (y desmantelamiento) de las armas nucleares y otros residuos radiológicos.

No es la única. Algunas especies de rubrobacter y chroococcidiopsis –una de las cianobacterias más primitivas que se conocen– rivalizan con Deinococcus radiodurans en tenacidad ante la radiación; la segunda se ha propuesto para la terraformación de Marte. Sin embargo, la más resistente de todas es una archaea llamada Thermococcus gammatolerans, un heterótrofo estrictamente anaeróbico con movilidad propia. Adquiere la forma de una esfera flagelada de una micra de diámetro y, como ocurre con todas las arqueas, no causa enfermedades ni se constituye en parásito.

Thermococcus gammatolerans

Thermococcus gammatolerans recupera su viabilidad y puede seguir reproduciéndose y medrando después de ser sometida a 30.000 grays (cepa EJ3), tres mil veces más de lo que podemos soportar nosotros.

Ya las archaeas tienden a ser duritas: se descubrieron como extremófilos, en lugares como lagos de sal o las aguas termales volcánicas, aunque ahora sabemos que están por todas partes. Pero Thermococcus gammatolerans es una cosa excepcional. Se siente cómoda en los respiraderos hidrotermales submarinos, a temperaturas de entre 55 y 95 ºC, o sea apenas cinco grados por debajo del punto de ebullición del agua; aunque se lo pasa pipa en torno a 88 ºC. Prefiere una acidez pH 6, con presencia de azufre, y medra a 2.000 metros de profundidad frente a la costa de Guyana. Es decir, a 200 atmósferas de presión. Esas son unas condiciones parecidas a las que hay en la caldera de una locomotora a vapor (algo menos de temperatura y bastante más presión).

Pero su resistencia a las radiaciones resulta difícil de asimilar. El límite de esta archaea, que se descubrió no hace mucho, aún no está bien estudiado. Pero se sabe esto: Thermococcus radiotolerans no se inmuta ante 3.000 grays y recupera su capacidad reproductiva (cepa EJ3) después de haber sido tratada con 30.000 grays. O sea, tres mil veces lo necesario para matarnos a ti o a mí con toda seguridad. Treinta kilograys es como… ¡cómo te lo diría yo! :-D Si no fuera por los efectos explosivos, sería como estar sentado a horcajadas sobre una bomba de hidrógeno cuando explota, en plan Teléfono Rojo: volamos hacia Moscú. Como pasarse cinco días enteros residiendo junto al reactor reventado de Chernóbyl. Qué quieres que te cuente.

¿Cómo puede ser esto? ¿Cómo pueden aguantar estos organismos semejantes niveles de radiación?

La mayor parte de ellos, porque no gastan médula ósea ni un tracto intestinal como el nuestro, que son especialmente frágiles ante la acción de las radiaciones ionizantes. Pero, para adentrarse en el ámbito de la resistencia ante miles de grays, hace falta algo más. Este algo más es la capacidad de regenerar rápidamente su ADN.

El ADN acusa mucho los efectos de la radiación: la luz ultravioleta (no-ionizante en frecuencia inferior, ionizante en superior) afecta seriamente a la citosina y la timina formando dímeros de pirimidina, mientras que las radiaciones ionizantes ocasionan fusión entrecruzada entre el ADN y las proteínas, desplazamiento tautomérico y radiólisis del agua circundante. Esto último crea agua oxigenada y radicales libres, más mutágenos aún que la misma radiación (la presencia de agua oxigenada en el citoplasma –o el núcleo, cuando lo hay– ocasiona hasta 2.600 veces más lesiones en el ADN que la radioactividad a pelo). Cuando la radiación es muy elevada, estas lesiones ocurren en avalancha y el ADN (o el ARN) resultan destruidos por completo, resultando en numerosos fragmentos severamente alterados.

Seres como el osito de agua, Deinococcus radiodurans, Thermococcus gammatolerans o los demás resistentes a la radiación mencionados en este post  parecen tener un ADN más resistente a estos efectos, y sobre todo una capacidad excepcional para regenerar rápidamente el dañado. El mecanismo exacto aún no se comprende bien, aunque por ejemplo Deinococcus radiodurans presenta un genoma organizado en anillos toroidales estrechamente empaquetados, lo que ayudaría a los pedazos de ADN a mantener su posición original, favoreciendo así su recomposición. Thermococcus gammatolerans tiene el ADN organizado en forma circular, pero parece gozar de una multitud de mecanismos regeneradores a nivel metabólico y enzimático.

Una pregunta intrigante es por qué estos seres han desarrollado semejante resistencia a la radiación, si en la naturaleza terrestre no hay tales niveles de radioactividad y por tanto no hay presión evolutiva en ese sentido. Aún no se sabe, pero una de las hipótesis más fuertes es que se trata de un efecto secundario de su resistencia a otras agresiones ambientales: si puedes reconstruir tu ADN después de una pasadita por el agua oxigenada, por ejemplo, en principio no deberías tener problemas para hacerlo después de un repaso radiológico de similar violencia. Por ello, todos estos organismos son poliextremófilos.

Resistencia a la radiación de diversos microorganismos seleccionados, incluyendo Thermococcus gammatolerans y Deinococcus radiodurans.

Resistencia a la radiación de diversos microorganismos seleccionados entre 0 y 10.000 grays, incluyendo Thermococcus gammatolerans y Deinococcus radiodurans. En Jolivet, E et al. 2003, "Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation", Int J Syst Evol Microbiol 53 (2003), 847-851. De los supervivientes a estas dosis de radiación surge la cepa Thermococcus gammatolerans EJ3, que soporta 30.000 grays regenerando su viabilidad. (Clic para ampliar)

Extremófilos: en los límites de la vida terrestre.

El estudio de los extremófilos, es decir los seres vivientes que pueden seguir siéndolo bajo condiciones extremas, resulta de lo más interesante en una diversidad de campos que van desde la astrofísica hasta la medicina: incluso una mejora menor en la capacidad del ADN humano para resistir este tipo de agresiones –digamos, un pequeño retoque con ingeniería genética en base a estos conocimientos– se traduciría inmediatamente en una mayor resistencia a la radiación, a los contaminantes ambientales, al cáncer y a las enfermedades hereditarias.

Extremos de altitud: Buitre de Rüppel (estratosfera) y estrella de mar (fosas hadalpelágicas).

Sin considearse estrictamente extremófilos, algunos animales son conocidos por hacer acto de presencia en lugares extremos. El 29 de noviembre de 1973, un buitre de Rüppel (arriba) fue ingerido por el reactor de un avión a 11.000 m de altitud, ya en plena estratosfera (temperatura típica a 11.000 m: –51 ºC; presión: 0,25 atmósferas). La estrella de mar (abajo) ha sido observada en lo más profundo de las fosas hadalpelágicas, donde la presión es de 1.100 atmósferas y la temperatura, de 2 a 4 ºC.

Los extremófilos tienen la capacidad de sobrevivir, reproducirse y medrar en condiciones que matarían a la inmensa mayoría de las cosas vivas, pasándoselo de lo más bien. Según el conocimiento actual, los límites absolutos para la vida terrestre parecen ser estos:

  • Temperatura.
    • Límite superior (termófilos): al menos 122 ºC (la archaea Methanopyrus kandleri, cepa 116) o 121 ºC (Archaea 121). El osito de agua puede resistir temporalmente hasta 151 ºC.
    • Límite inferior (psicrófilos, manteniendo la actividad metabólica): El agua puede permanecer líquida muy por debajo de 0 ºC si está mezclada con sales u otras sustancias; se cree que, mientras haya un solvente líquido, no hay un límite de temperatura inferior para la vida (Price, B., y Sowers, T. 2004. Temperature dependence of metabolism rates for microbial growth, maintenance, and survival. Proceedings of the National Academy of Sciences, EEUU. 101:4631-4636.). Se ha observado actividad fotosintética en líquenes criptoendolíticos a –20ºC (Friedmann, E.I., y Sun, H.J. 2005. Communities adjust their temperature optima by shifting producer-to-consumer ratio, en Lichens as models: 1. Hypothesis. Microb. Ecol. 49:523-527). Hay indicios de transferencia electrónica y actividad enzimática a –80 ºC (Junge, K, Eicken, H., Swanson, B.D., y Deming, J.W. 2006. Bacterial incorporation of leucine into protein down to –20°C with evidence for potential activity in subeutectic saline ice formations. Cryobiology 52(3):417-429.). Se ha registrado actividad enzimática en una mezcla de agua, metanol y glicol a –100 ºC (Bragger, J.M., Dunn, R.V., y Daniel, R.M. 2000. Enzyme activity down to -100°C. Biochim. Biophys. Acta 1480:278-282.).
    • Preservación: Existen numerosos seres capaces de preservarse en temperaturas extremadamente bajas. Además de los mencionados ositos, que parecen capaces de aguantar unos minutos a apenas un grado por encima del cero absoluto (en torno a –273 ºC), numerosas especies adoptan mecanismos de conservación indefinida en el frío intenso.
  • Presión.
    • Límite superior (piezófilos): El popular microorganismo E. coli soporta presiones de al menos 16.000 atmósferas manteniendo activo su metabolismo. El experimento se realizó en una prensa para fabricar diamante artificial (Sharma et al. 2002, Diamond anvil cells used to demonstrate bacterial metabolism up to 1.6 Gpa, Science 295:1514-1516). Entre los pluricelulares eucariotas, el osito de mar aguanta al menos 6.000 atmósferas (Seki, Kunihiro y Toyoshima, Masato, 1998. Preserving tardigrades under pressure. Nature 395: 853–854). Los seres hadales viven rutinariamente a presiones en torno a 1.100 atmósferas (de hecho, necesitan estas presiones para sobrevivir).
    • Límite inferior (manteniendo la actividad metabólica): Relacionado con la conservación de la humedad (ver más abajo).
    • Preservación: No parece haber un límite inferior de preservación. Incontables organismos se deshidratan y conservan en condiciones de presión próximas al vacío absoluto.
  • Humedad (de agua).
    • Límite superior: Sin límite superior: la vida acuática es omnipresente en el planeta Tierra.
    • Límite inferior (xerófilos): Normalmente las bacterias detienen su crecimiento con una actividad acuosa inferior a 0,91 y los hongos, a 0,7. Sin embargo, microorganismos como Psychrobacter arcticus se pueden cultivar en entornos de actividad acuosa mucho más baja, en torno a 0,3. Eso es mucho más seco que el más seco de los desiertos terrestres. Numerosos mohos y levaduras son xerófilos.
    • Preservación: Gran cantidad de organismos se preservan en condiciones de deshidratación. El osito de agua puede sobrevivir una década sin contacto con la misma.
  • Acidez /alcalinidad.
    • Acidez (acidófilos): Muchos seres vivos sobreviven en pH inferior a 2. La archaea Ferroplasma acidiphilum puede vivir en ácido sulfúrico con pH próximo a cero. Por tanto, no hay límite de acidez para la vida terrestre.
    • Alcalinidad (alcalífilos): De la misma manera, muchos otros seres medran en pH entre 9 y 11. Bacillus alcalophilus TA2.A1 tiene un pH interno de 9 y medra en pH 11,5 (Olsson, K et al. 2003, Bioenergetic Properties of the Thermoalkaliphilic Bacillus sp. Strain TA2.A1, J Bacteriol. Enero 2003; 185(2): 461–465.). Esa es más o menos la alcalinidad del agua jabonosa.
  • Radiación.
    • Límite superior: Como ya hemos visto, la archaea Thermococcus gammatolerans (cepa EJ3) soporta 3.000 grays sin enterarse y 30.000 grays recuperando su viabilidad. Entre los pluricelulares, el osito de agua resiste 5.000 grays, aunque pierde su viabilidad. (Fuentes citadas)
    • Límite inferior: Sin límite inferior.
  • Otros.
    • Salinidad (halófilos): Numeros microorganismos sobreviven y se reproducen sin problemas en entornos de alta salinidad. Algunas archaeas requieren 1,5M NaCl para mantener su integridad y reproducirse.
    • Resistencia a los azúcares (osmófilos). El hongo Saccharomyces rouxii requiere una actividad acuosa relativa a los azúcares de 0,61 y Monascus bisphorus crece en 0,62.
Venus terraformado.

Impresión artística de un hipotético Venus terraformado. El uso de extremófilos se ha propuesto insistentemente para la modificación biótica de mundos muertos.

Como ya hemos apuntado, algunas de estas resistencias están relacionadas entre sí. Es por ello que existen numerosos organismos poliextremófilos, es decir, resistentes a varias de estas condiciones simultáneamente. Por ejemplo, tenemos termoacidófilos, que se desempeñan bien a temperaturas de 70-80 ºC y pH 2 a 3. Muchos xerófilos son también halófilos (u osmófilos) y psicrófilos. Ya hemos visto la cantidad de barrabasadas distintas que se le pueden hacer a nuestro osito de agua o a Deinococcus radiodurans antes de que se mueran. Otros poliextremófilos extremos, valga la redundancia, son el gusano de Pompeya, el Paralvinella sulfincola, la Pyrococcus furiosus, las bacterias del fango de las cavernas y muchos más.

Todos estos seres demuestran la feraz tenacidad de la vida y desafían nuestra comprensión tradicional sobre sus límites, incluso ciñéndonos a la terrestre basada en el carbono, el ADN/ARN y el agua. Desconocemos hoy por hoy cuáles son los límites para el surgimiento de la vida, pero obviamente es capaz de sobrevivir en condiciones asombrosas. Si un ser tan complejo como el osito de agua es capaz de sobrevivir diez días en el espacio exterior y seguir reproduciéndose, eso significa que las posibilidades son enormes. Los poliextremófilos sugieren planteamientos realistas de vida extraterrestre, de terraformación y de aumento de nuestra propia resistencia a todas estas agresiones por vías artificiales. Nos enseñan lo que es posible como mínimo, y lo que es posible como mínimo parece llegar mucho más lejos de lo que osábamos soñar.

144 Comentarios Trackbacks / Pingbacks (16)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (90 votos, media: 4,89 de 5)
Cargando...
Be Sociable, Share!

500 exoplanetas

Existen innumerables soles;
hay innumerables tierras que giran alrededor de estos soles,
de manera similar a la que nuestros siete planetas giran alrededor de nuestro sol. […]
Hay seres vivientes que habitan estos mundos.

Giordano Bruno, De l’infinito, universo e mondi, 1584.

Estatua a Giordano Bruno en Roma.

Estatua a Giordano Bruno en Campo de' Fiori, Roma, el lugar donde la Inquisición Católica lo quemó vivo y con la lengua acerrojada el 17 de febrero de 1600 por inmoralidad, enseñanzas erróneas, blasfemia, brujería y herejía. Entre estas "enseñanzas erróneas" se contaba el heliocentrismo, el principio de la pluralidad de los mundos y los orígenes más remotos de la Teoría de la Información Cuántica.

En el momento en que empiezo a escribir este post (lunes, 22/11/2010), el catálogo que mantiene Jean Schneider (CNRSLUTH, Observatorio de París) ya cuenta 502 candidatos a planetas extrasolares. Anteayer, PlanetQuest de la NASA actualizó a 500 también. El número de mundos detectados alrededor de otros soles crece sin parar. Hay planetas por todas partes: al menos el 10%, probablemente el 25% y hasta el 100% de las estrellas del tipo de nuestro Sol podrían tenerlos girando a su alrededor. Cada día es más cierta la segunda afirmación del cosmólogo napolitano quemado vivo hace cuatro siglos por la Inquisición Papal bajo acusación de inmoralidad, enseñanzas erróneas, blasfemia, brujería y herejía. Ni más ni menos.

De la pluralidad de los mundos.

Bruno no fue el primero de los humanos en defender la pluralidad de los mundos habitados. Que se recuerde, este honor recae en los atomistas griegos, esencialmente materialistas filosóficosLeucipo, Demócrito o Epicuro acariciaron el concepto. Sin embargo Platón y Aristóteles se oponían y afirmaban que la Tierra tenía que ser única, con la humanidad (y sobre todo unas ciertas clases de la humanidad) en la cúspide de la creación.

Por motivos obvios, a los cristianos les gustaban mucho más las ideas de Platón y Aristóteles que las de los ateos atomistas. Así que cuando la Cristiandad se impuso en Occidente, lo hizo bebiendo de una cosmología clásica geocéntrica y creacionista donde la Tierra constituía un caso único y nuclear en el cosmos: el lugar elegido por Dios para encarnarse en Jesús, el escenario esencial del plan de salvación divino. La idea de que este no fuera más que un mundo cualquiera con una vida cualquiera en un rincón perdido del cosmos era –y es– difícil de conciliar con una teología salvífica antropomórfica: el Hombre creado a imagen y semejanza de Dios, el Dios encarnado en Hombre, la verticalidad del poder y de la revelación y todo ese rollo. No resulta, pues, de extrañar que los cristianos en general y los católicos en particular se tomaran cada pensamiento discrepante como un ataque frontal a su fe y a su poder. Pese a ello, al menos Nicolás de Cusa planteó ya algunas discrepancias notables al respecto.

La pluralidad de los mundos habitados aparece, aunque de pasada, en la literatura islámica medieval. Algunos de los maravillosos Cuentos de las mil y una noches –que ahora algunos fundamentalistas islámicos también se quieren cargar– incluyen elementos que hoy en día llamaríamos de ciencia ficción; entre ellos, Las aventuras de Bulukiya relata un viaje por diversos planetas habitados.

Pero Bruno sí fue el primero que planteó el asunto en términos modernos, protocientíficos. Con su muerte y la inclusión de todas sus obras en el Índice de Libros Prohibidos, aún tuvo que transcurrir casi otro siglo antes de que la idea empezara a generalizarse en el pensamiento occidental. Ocurriría en 1686, con las Conversaciones sobre la pluralidad de los mundos de Fontenelle, y más decisivamente a partir del triunfo de la Ilustración en el siglo XVIII. Locke, Herschel y hasta los padres fundadores de los Estados Unidos Adams y Franklin exploraron provechosamente la cuestión. Para los cosmistas rusos, y especialmente para el padre de la cosmonáutica Konstantin Tsiolkovsky, la pluralidad de los mundos habitados fue asunto difícilmente discutible. Al llegar el siglo XX, ya sabíamos de sobras que las estrellas del cielo son soles como el nuestro, mayormente distribuidos en grandes galaxias, y sospechábamos con fuerza que debía haber muchos más mundos alrededor de esos otros soles. Pero no teníamos ninguna prueba fehaciente al respecto. Y ya sabes que en ciencia somos muy puñeteros con eso de las pruebas fehacientes.

Detectando planetas extrasolares.

El problema con los planetas –y lunas– situados en torno a otros sistemas solares es que no emiten luz propia y están muy lejos. Actualmente, las estrellas más próximas a nosotros son el sistema Alfa Centauri, a 4,4 años-luz de distancia: lo que vienen siendo 41 billones y pico de kilómetros. Y esas son las más cercanas. La tenue luz reflejada por un planeta o una luna resulta muy difícil de distinguir a semejantes distancias, y normalmente no se puede hacer con los instrumentos del presente. Si nosotros estuviéramos situados en Alfa Centauri, la Tierra nos resultaría invisible por completo; no digamos ya mundos más lejanos.

Detección de exoplanetas por velocidad radial o espectroscopia Doppler.

La presencia de planetas girando alrededor de una estrella obliga a todo el sistema a orbitar alrededor del centro de masas común. Esta "minórbita" descrita por la estrella puede ser detectada a inmensas distancias, delatando así la existencia de planetas extrasolares invisibles a los ojos y telescopios. En la actualidad, existen métodos para aplicar esta técnica con una precisión de un metro por segundo, a muchos años-luz de distancia. Los planetas muy grandes hacen que este efecto sea más perceptible.

Por ello, la duda sobre la existencia de estas innumerables tierras girando alrededor de otros innumerables soles perduró hasta casi el siglo XXI. Así, hubo que detectarlos por vías indirectas. La más básica es la medición de la velocidad radial o espectroscopia Doppler. El principio es relativamente sencillo: todos los astros de un sistema solar, incluyendo a la estrella (o estrellas), giran en torno al centro de masas del conjunto. Cuando hay planetas, sobre todo cuando hay planetas grandes, esto se traduce en una excentricidad o bamboleo de la estrella; y como la estrella emite enormes cantidades de luz y radiación, este comportamiento puede observarse a gran distancia.

De hecho, nuestros instrumentos son bastante buenos a la hora de detectar estas anomalías. El primero en proponer la existencia de planetas alrededor de otra estrella mediante esta técnica fue el capitán W. S. Jacob del Observatorio de Madrás, perteneciente a la Compañía Británica de las Indias Orientales, ya ¡en 1855! El objeto de su deseo –del capitán Jacob y de algunos otros que vinieron después– era 70 Ophiuchi, un sistema estelar binario relativamente próximo, a 16,64 años-luz de aquí. Este sistema presenta una órbita muy excéntrica, una anomalía que condujo a pensar que allí tenía que haber un compañero invisible con un décimo de la masa del Sol. Desafortunadamente, esta hipótesis no se ha podido confirmar. Por lo que sabemos ahora mismo, en 70 Ophiuchi no hay ningún planeta con las características descritas por Jacob y los demás. Sin embargo, naturalmente, esto podría cambiar en el futuro.

La primera detección confirmada de un planeta extrasolar, usando este método, fue realizada por un equipo canadiense en 1988. Aunque al principio fueron extremadamente cautos, dado que esta observación se encontraba en el límite de los instrumentos de su tiempo, el descubrimiento se confirmó en 2002. Está en torno a la estrella Alrai o Errai (del árabe Al-Rai, el pastor), conocida sistemáticamente como gamma Cephei, y por eso lo llamamos gamma Cephei Ab o Errai A1. Se trata de un planeta grande, un gigante gaseoso con la masa de un Júpiter y medio y un poco más, que orbita con cierta excentricidad a unos trescientos millones de kilómetros de la estrella. Su año –el tiempo que tarda en dar una vuelta alrededor de su sol– equivale a unos 903 días terrestres.

Errai A1 no fue el primer planeta en ser confirmado. Este honor corresponde al sistema solar en torno al púlsar PSR B1257+12, que se encuentra en la constelación de Virgo a unos 980 años-luz de la Tierra. Los púlsares son estrellas de neutrones que emiten radiación con una frecuencia muy precisa, tanto que se consideran las radiobalizas galácticas, y por tanto la menor anomalía en el tictac de estos relojes cósmicos resulta relativamente fácil de reconocer. Esto nos conduce a otra manera de detectar exoplanetas: la temporización de púlsares.

La temporización de púlsares se parece mucho a la detección por velocidad radial; sólo que las minúsculas variaciones en las emisiones del púlsar provocadas por este mismo fenómeno multiplica su precisión por varios órdenes de magnitud. Así se han descubierto ya planetas del tamaño de la Tierra en torno a varios púlsares. Por desgracia, sólo funciona en los púlsares, y encima ninguna clase de vida ni remotamente parecida a la que conocemos puede surgir o sobrevivir en las cercanías de estrellas de neutrones como estas; sin embargo, la detección de estos planetas del tipo de la Tierra demuestra que son posibles en otros sistemas solares.

El exoplaneta Fomalhaut b observado por el telescopio espacial Hubble en 2004 y 2006.

El exoplaneta Fomalhaut b observado por el telescopio espacial Hubble en 2004 y 2006. Ver en ventana o pestaña nueva para ampliar. (NASA)

El primer planeta confirmado en torno a una estrella de la secuencia principal del tipo del Sol (G2) fue 51 Pegasi b, a 50,9 años-luz de aquí. Se detectó también por velocidad radial y es un Júpiter caliente, que orbita a apenas 8 millones de kilómetros de su sol. Los planetas más parecidos a la Tierra que se han hallado hasta el momento, utilizando el mismo método, se encuentran en torno a una enana roja de la constelación de Libra llamada Gliese 581, a 20,3 años-luz de distancia; aunque COROT-7b tampoco es de despreciar. COROT-7b es interesante también porque se detectó fotométricamente, que es otra técnica para localizar estos exoplanetas.

La técnica fotométrica más común es la observación del tránsito. Básicamente, cuando un planeta pasa por delante de su estrella (entre su estrella y nosotros, vaya), «tapa» (eclipsa) una parte de su luz y por tanto modifica las características de luminosidad que observamos desde aquí. Es lo más parecido a ver un planeta que podemos hacer normalmente, hoy por hoy. Por desgracia, este método produce un montón de falsos positivos; por fortuna, resulta relativamente fácil descartarlos aplicando a continuación la técnica de velocidad radial. El resto son ventajas: una vez confirmada la presencia del objeto, la fotometría permite estudiar su dimensión, su densidad, su atmósfera y sus emisiones de radiación, aportando una gran cantidad de datos sobre sus características.

Existen más técnicas indirectas para la detección de exoplanetas, entre las que se encuentran las microlentes gravitacionales, de tanta utilidad para hallar incontables cosas que no ven los ojos. Sin embargo, a estas alturas ya se ha conseguido confirmar al menos diez por observación directa. Viéndolo con un telescopio, vamos. Estos suelen ser planetas gaseosos muy grandes, muchas veces Júpiter, tanto que están a punto de encenderse como pequeñas enanas marrones y por tanto emiten su propia radiación.

El escenario actual va como sigue: las técnicas de detección que tenemos hoy en día son adecuadas para detectar grandes planetas, del tipo de los exteriores de nuestro sistema solar o más grandes aún. Los planetas pequeños y rocosos resultan más esquivos, y no digamos ya las posibles lunas de unos y otros, que de momento permanecen completamente invisibles a nuestros ojos e instrumentos. Esto quiere decir que en esos casi 400 sistemas solares que hemos detectado ya (¡y los que quedan por descubrir!) podría haber innumerables tierras esperando a que las veamos con un instrumento mejor. La constante mejora de estas técnicas está ocasionando un rápido incremento en el número de candidatos a exoplanetas, lo que sería indicativo de que existen muchísimos más:

Detección de exoplanetas entre 1989 y octubre de 2010, con detalle de la técnica empleada.

Detección de candidatos a exoplanetas entre 1989 y el 3 de octubre de 2010, con detalle de la técnica empleada. En estos momentos, estamos ya cerca de descubrir cien al año. (Clic para ampliar)

Ricitos de oro y los tres osos.

Ilustración del cuento infantil "Ricitos de oro y los tres osos". La moraleja: "ni demasiado caliente ni demasiado frío, ni demasiado grande ni demasiado pequeño..."

En busca de Ricitos de oro.

El sueño húmedo de todo investigador que se precie es, por supuesto, descubrir un planeta de características análogas a las de la Tierra. Más que nada porque, si bien se puede especular todo lo que se quiera sobre formas de vida extrañas, sabemos que en los planetas de estas características la vida es posible: nosotros estamos aquí. Estos planetas, que de momento serían hipotéticos si no fuera porque la Tierra existe y está bajo nuestros pies, se han venido a denominar –no sin cierta sorna– goldilocksricitos de oro«) por el cuento infantil Ricitos de Oro y los tres osos. Y quizá, también, por la cantidad de novios que les saldrían. ;-)

Un planeta (o luna) ricitos de oro es un astro que reúne las condiciones básicas para permitir la vida del tipo de la terrestre.Vamos a detenernos un momento en el concepto, porque a veces se interpreta fatal. El interés en los ricitos de oro no presupone que la vida en la Tierra sea el único tipo de vida posible; sino que la posibilidad (que no la probabilidad) de vida en los planetas del tipo de la Tierra es total (nosotros somos la prueba), mientras que en el resto no lo sabemos. Y, por tanto, parece sensato concentrar los siempre magros recursos destinados a la búsqueda de vida extraterrestre en este tipo de mundos, al menos en primera instancia.

El propósito de las búsquedas de planetas extrasolares no es, todavía, la localización de vida extrasolar. Ni siquiera la de un segundo hogar, donde el «principio ricitos de oro» tiene aún más sentido. Por el momento, esta investigación pertenece aún al ámbito de la ciencia pura, y estamos haciendo poco más que encontrarlos, contarlos y tratar de describir algunas de sus características. Hay que aprender a andar antes de correr. Pero se notan las ganas. :-D La menor sugerencia de que se ha detectado algún planeta telúrico o casi-telúrico provoca de inmediato gran revuelo tanto entre la comunidad científica como en la sociedad; ocurrió hace poco con el descartado (de momento) Gliese 581 g. Aunque esto de descartar candidatos es un suceso habitual en la búsqueda exoplanetaria, produjo claramente mucha más decepción que el descarte de un planeta pegasiano o uno chitónico, por decir algo.

Los "seres de luz" o de "energía pura", comunes a algunas expresiones de la espiritualidad y la literatura fantástica, serían virulentamente explosivos. :-P

Los "seres de luz" o de "energía pura", comunes a algunas expresiones de la espiritualidad y la literatura fantástica, serían virulentamente explosivos y deberían estar sometidos al Tratado de No Proliferación. :-P

Por supuesto, podríamos caer en un error terracéntrico si nos concentráramos sólo en estos mundos a la hora de buscar a otras gentes (aunque no si pretendiéramos encontrar ese segundo hogar…). No obstante, la aproximación ricitos de oro tiene bastante lógica. Veamos. Por un lado, resulta muy difícil imaginar tipos de vida desvinculados de la materia. En el ámbito de la religión y el esoterismo tienen gran querencia por los seres de luz y los entes de energía pura, pero un ser de luz (o sea, de fotones) sería extremadamente inestable y lo más parecido que se me ocurre a un ente de energía pura es una bomba de antimateria.

Ya he dicho alguna vez en este blog que no hay tal cosa como algo superior o inferior a otra en nuestro universo, y la idea de que la energía es de algún modo superior a la materia resulta absurda por completo. Si algo, sería al revés: la materia es una inmensa cantidad de energía exquisitamente estructurada, con un grado de estabilidad y sofisticación mucho mayor al de la energía pura (!), que es bastante primaria y básica. Es más: antes de poder dar lugar a cualquier forma de vida sensatamente imaginable, debe presentar un mínimo grado de organización. En la práctica: ser materia bariónica. El escalón de la materia y el escalón de la materia bariónica parecen dos pasos necesarios e imprescindibles en el surgimiento de algo tan diabólicamente complejo como la vida.

Y en este universo, la materia bariónica se halla sobre todo en el espacio interplanetario e intergaláctico –demasiado esparcida para dar lugar a vida por sí misma–, en las estrellas –demasiado calientes para permitir su surgimiento y estabilidad– y en los planetas y sus lunas. Estos últimos constituyen, pues, el escenario idóneo para el surgimiento de las formas de vida más probables. Por eso la vida que conocemos apareció en un planeta; como la Tierra, por ejemplo.

Zona de habitabilitad, según distintos tamaños de estrellas, comparada con nuestro sistema solar.

Zona habitable ("ricitos de oro"), según distintos tamaños de estrellas, comparada con nuestro sistema solar. (Clic para ampliar)

Hay cosas que evidentemente favorecen el nacimiento y desarrollo de al menos una forma de vida, y otras que lo desfavorecen. La presencia de un solvente líquido como el agua ayuda mucho, pues permite que átomos y moléculas de materia muy distinta entren en contacto fácilmente entre sí. Para eso, la temperatura no debe ser tan baja que esté todo congelado e inmóvil, ni tan alta que los solventes se conviertan en vapor o plasma. La región alrededor de un sol donde un solvente como el agua puede permanecer en estado líquido se denomina zona habitable. O también zona ricitos de oro. Los planetas ricitos de oro son aquellos que se encuentran dentro de la zona habitable de sus respectivas estrellas.

Existen más condicionantes que pueden alterar radicalmente la capacidad de un planeta para albergar vida. Por ejemplo, las gigantescas estrellas de tipo O probablemente barran todo el espacio circundante con un violentísimo viento solar, impidiendo la formación de planetas en su hipotética zona habitable.

En el extremo contrario, las enanas rojas –que constituyen la mayor parte de las estrellas de la galaxia– se habían descartado tradicionalmente pero en los últimos años han suscitado nuevo interés. Por la parte mala, emiten muy poca luz y calor, con lo que su zona habitable debe ser muy estrecha y cercana; cualquier planeta que se halle en esta región estará seguramente sometido a acoplamiento de marea (como la Tierra y la Luna), dando lugar a un hemisferio permanentemente expuesto al sol y otro en noche perpetua, lo que hace muy difícil la vida fuera de la estrecha zona de transición entre uno y otro; y encima son muy variables, lo que puede cargarse durante una fase de su historia todo lo logrado en la anterior. A su favor juega que son extremadamente abundantes y sobre todo longevas: durarán billones con «b» de años, permitiendo así incontables oportunidades para que se produzcan muchas tentativas; cualquiera de ellas puede dar en el clavo con una forma de vida capaz de medrar en estas circunstancias.

Radiotelescopio de Yevpatoriya (Ucrania), el más grande de Eurasia.

Desde el radiotelescopio de Yevpatoriya (Ucrania), el más grande de Eurasia, se han enviado ya al menos dos mensajes hacia 47 de Osa Mayor y otras estrellas prometedoras. 47 UMa es un sol muy parecido al nuestro, a 46 años-luz de distancia, donde ya se han detectado varios planetas.

No obstante, los soles más idóneos parecen ser los de tipo G y sobre todo K. Nosotros surgimos en torno a una estrella de tipo G, la enana amarilla llamada Sol, pero por su larga vida y comportamiento similar las de tipo K (enanas naranjas) podrían ser aún mejores. Las estrellas G y K suman al menos el 14% de los soles en nuestra galaxia y en muchas de ellas ya hemos detectado planetas. Entre las más próximas, tenemos ya candidatos a planetas en Epsilon Eridani (K2V, 10,5 años luz), 47 de Osa Mayor (G1V, 46 años luz, interesantísima) o AB Pictoris (K2V, 148 años-luz). Con toda probabilidad hay muchos más, esperando a que tengamos instrumentos más sensibles, como quisieron serlo el cancelado Darwin de la ESA o el postergado TPF de la NASA.

Lo seguro es que cada día hay más candidatos a convertirse en esas innumerables tierras de las que habló Giordano Bruno. De momento llevamos ya medio millar y, al ritmo actual, antes de cinco años habremos alcanzado los mil como mínimo, más todo los que no podemos prever aún. Si esta es la densidad planetaria típica en una galaxia, sólo en nuestra Vía Láctea debe haber entre cientos y miles de millones de planetas, más sus lunas, lo que podría elevar el número de estos astros al orden de la decena de millar de millones. Vale, los que estén más cerca de los núcleos galácticos no valen. Ni los de estrellas demasiado grandes o demasiado pequeñas. Aceptemos que tampoco los de sistemas múltiples. Sigue siendo un número asombroso: aunque apenas uno de cada diez millones de estos mundos fuera ricitos de oro, seguirían siendo mil sólo en esta galaxia.

Se considera que la zona de habitabilidad galáctica (ni demasiado cerca del centro para que la radiación no acabe con todo, ni tan lejos que dificulte la formación de elementos pesados) tiene unos seis mil años luz de ancho, empezando a una distancia de 25.000 desde el núcleo galáctico. El disco estelar de la Vía Láctea es esencialmente plano, con un grosor de apenas mil años-luz.  Si calculamos el volumen de este disco y luego le sacamos la raiz cúbica, nos sale que debería haber un ricitos de oro de media cada mil años-luz aproximadamente, lo que seguramente aporta algo de luz a la pregunta de ¿dónde está todo el mundo? En todo caso, observa que estamos utilizando las estimaciones más conservadoras posibles, suponiendo siempre formas de vida análogas a la terrestre y contando únicamente nuestra galaxia.

Así pues, a estas alturas ya podemos afirmar rotundamente con Giordano Burno: existen innumerables soles. Dependiendo del sentido, también podemos decir con él: hay innumerables tierras que giran alrededor de estos soles. Y, sin duda, podemos seguir preguntándonos legítimamente: ¿hay seres vivientes que habitan estos mundos? Bruno y quienes fueron como Bruno apostaron a que sí. Como poco, podemos contestar ya: existe una elevada probabilidad. Y es posible que la respuesta esté mucho más cerca de lo que podemos soñar hoy.

PD: Resulta difícil determinar cuál es el «exoplaneta número 500», puesto que los candidatos entran y salen de la lista constantemente. En estos momentos, PlanetQuest de la NASA cuenta en esta posición a HD 218566 b, situado a unos 97 años-luz de aquí: un astro algo más pequeño que Saturno orbitando en torno a una estrella de tipo K3V.

77 Comentarios Trackbacks / Pingbacks (5)
¡Qué malo!Pschá.No está mal.Es bueno.¡¡¡Magnífico!!! (59 votos, media: 4,85 de 5)
Cargando...
Be Sociable, Share!

« Entradas anteriores Página siguiente » Página siguiente »